Journal of Chromatography, 260 (1983) 51 62 Elsevier Science Publishers B.V., Amsterdam — Printed in the Netherlands

CHROM. 15,614

GAS CHROMATOGRAPHIC AND MASS SPECTROMETRIC PROPERTIES OF NAPHTHALENEMETHYL ESTERS AND CYCLOHEXANEMETHYL ES-TERS OF ORGANIC ACIDS

D. L. CORINA* and K. ISAAC

Departement of Biochemistry, University of Southampton, Southampton SO9 3TU (Great Britain) (Received December 1st, 1982)

SUMMARY

The preparation of the esterifying reagents naphthyldiazomethane and cyclohexyldiazomethane is described. These reagents have been used to prepare the naphthalenemethyl and cyclohexanemethyl esters of various types of carboxylic acids. Data are presented for the gas chromatographic retention times of the esters on OV-1 and also for their mass spectral fragmentation patterns.

INTRODUCTION

Benzyl esters, prepared by esterification with phenyldiazomethane (diazotoluene), have been investigated extensively in our laboratory¹⁻³ and elsewhere^{4,5} by gas chromatography (GC) and gas chromatography-mass spectrometry (GC-MS). Continuing our interest in analogues of diazomethane as esterification reagents, and the GC and GC-MS properties of esters prepared from them, we have prepared two further reagents, naphthyldiazomethane (A) and cyclohexyldiazomethane (B).

(A) Naphthyldiazomethane, NDM (1-diazomethylnaphthalene)

CHN₂

(B) Cyclohexyldiazomethane, CHDM (diazomethylcyclohexane)

In this paper we describe the preparation of these two reagents and outline the GC and MS properties of the resulting naphthalenemethyl (NM) and cyclohexanemethyl (CHM) esters of various types of carboxylic acids.

EXPERIMENTAL

Materials

Cyclohexanemethylamine and 1-naphthalenemethylamine were purchased from Aldrich (Gillingham, Dorset, Great Britain); toluene sulphonation and nitro-

0021-9673/83/\$03.00 © 1983 Elsevier Science Publishers B.V.

sation reagents from BDH (Poole, Great Britain) were recrystallized before use, and carboxylic acids or salts were commercial preparations from various sources and were used without further purification. Tetrahydrofuran-2-carboxylic acid was prepared from tetrahydrofurfural alcohol by Pt/charcoal-air oxidation⁶ for 6 h. All solvents were redistilled and stored over 3A molecular sieve. In addition, petroleum spirit, b.p. 30-40°C, was stored over activated alumina.

Synthesis of diazo precursors N-naphthalenemethyl-N-nitrosotoluene-4-sulphonamide and N-cyclohexanemethyl-N-nitrosotoluene-4-sulphonamide

These were synthesised via toluenesulphonation (tosylation) and nitrosation by modifications of established procedures for the methyl⁷ and benzyl⁸ derivatives. The starting amines appeared to be susceptible to atmospheric oxidation, therefore the addition of the amines to the reaction solvent (as soon as possible after weighing) and the initial stages of the tosylation reactions were conducted under an atmosphere of nitrogen. We also found it advantageous to add toluenesulphonyl chloride and alkali in smaller batches more frequently than in previous syntheses⁷ and to start the addition of tosyl chloride before the mixture was heated.

N-Naphthalenemethyltoluene-4-sulphonamide

1-Naphthalenemethylamine (2.5 ml, 2.7 g) was added to a mixture of 8.0 ml of water and 4.0 ml of dimethylformamide (DMF) with stirring and further DMF was added, as necessary, to render the mixture homogeneous. The addition of tosyl chloride, in 200-400 mg batches, was started immediately and the mixture gradually heated to 70°C with occasional addition of sufficient 50% sodium hydroxide in water-DMF (2:1) to keep the mixture just alkaline. A total of 3.5 g of tosyl chloride was added over a 1.5-h period. On completion of the addition, the mixture was boiled gently for 30 min, ensuring that the mixture remained alkaline. Water (20 ml) was added and the mixture was reheated to melt the precipitated N-naphthalenemethyltoluene-4-sulphonamide. After cooling with rapid stirring the dispersed product was filtered off and air-dried; yield 92% by GC. Purity and progress of the reaction were assessed by GC on a 3% OV-1 column (2.1 m × 2 mm I.D.) programmed 3 min at 160°C, 40°C/min to 340°C when R_T 1-naphthalenemethylamine = 1.6 min and Nnaphthalenemethyltoluene-4-sulphonamide = 8.1 min. Material recrystallized from boiling ethanol had m.p. 89-91°C and mass spectrum (direct probe 120°), M⁺ at 311 (6.3% base) and m/z 156 (79%), 155 (98%), 154 (100%), 141 (21%), 129 (24%), 128 (19%), 127 (21%) and 91 (29%).

N-Naphthalenemethyl-N-nitrosotoluene-4-sulphonamide

This compound was synthesized by prolonged incubation following the procedure in ref. 8; 2.4 g of N-naphthalenemethyltoluene-4-sulphonamide wcrc suspended in 10 ml of glacial acetic acid and cooled to 5°C with stirring. Pre-cooled acetic anhydride was added until solution was complete (60–80 ml). A total of 12 g of solid sodium nitrite was added in small batches over a period of 48 h, the mixture being left stirring overnight at 5°C and for a further 16 h at 5°C after addition of the nitrite was completed. The reaction mixture was then poured into 500 ml of ice-water and warmed to room temperature. On completion of the hydrolysis of the acetic anhydride, a further 200 ml of water were added, the product was filtered off and washed free from acetic acid with water. The N-naphthalenemethyl-N-nitrosotoluene-4-sulphonamide was dissolved in diethyl ether, washed with dilute sodium hydrogen carbonate solution, water and finally dried over anydrous sodium sulphate. After evaporation of solvent, the product was recrystallized from diethyl ether-*n*-hexane to yield 2.1 g (80%) pale yellow crystals, m.p. 95–97°C, mass spectrum (direct probe) $M^+ = 340$ (4.6%) and *m*/*z* 310 (9.1%), 308 (7.0%), 232 (2.3%), 185 (6.1%), 156 (32%), 155 (51%), 154 (70%), 141 (100%), 128 (15%), 127 (26%), 115 (10%), 91 (40%) and 30 (23%). Purity checked by thin-layer chromatography (TLC) on silica gel (F-1500) with solvent *n*-hexane-dichloromethane-methanol (70:29:1), R_F product = 0.55, tosyl intermediate = 0.34. The product stored best in a dark bottle at 5°C.

N-Cyclohexanemethyltoluene-4-sulphonamide

This compound was prepared in a manner analogous to the NM derivative above with the reagent proportions 6.0 ml, 5.2 g of cyclohexanemethylamine in 15 ml of water (DMF unnecessary) and 10 g of tosyl chloride. The yield was 90%; after recrystallization from hot ethanol, N-cyclohexanemethyltoluene-4-sulphonamide had m.p. 57–59°C and mass spectrum (direct probe 100°C) $M^+ = 267 (12\%)$ and m/z 186 (34%), 185 (31%), 184 (99%), 172 (23%), 157 (25%), 156 (29%), 155 (100%), 96 (36%), 92 (31%) and 91 (60%). GC retention on an OV-1 column, programmed as for the NM derivative but 100°C start, cyclohexanemethylamine = 1.8 min, tosyl CHM = 9.2 min.

N-Cyclohexanemethyl-N-nitrosotoluene-4-sulphonamide

N-Cyclohexanemethyltoluene-4-sulphonamide (12 g) was dissolved in 300 ml of glacial acetic acid and 4 ml of concentrated hydrochloric acid were added. After cooling to below 10°C the material was nitrosated with 7 g of sodium nitrite in 10 ml of water by established procedures⁷ over a 1-h period and left a further 45 min. After the addition of 300 ml of water and warming to room temperature, the product was filtered off, washed and dried as described for the NM analogue above. Recrystallization from diethyl ether–*n*-hexane gave bright yellow crystals, yield 82%, m.p. 84–86°C and mass spectrum (direct probe 120°) M⁺ = 296 (0.14%) and *m*/*z* 266 (1.9%), 210 (1.2%), 184 (11%), 172 (2.7%), 155 (42%), 97 (18%), 96 (20%), 91 (100%) and 30 (18%).

Generation of naphthyldiazomethane and cyclohexyldiazomethane

Both reagents were generated by the same procedure. A solution of 3 g of potassium hydroxide in 6.0 ml of methanol-water (4:1) was heated to boiling. A total of 300-400 mg of nitroso derivative was added, with shaking, in 50-60 mg batches. The solutions turned deep orange-red (NDM) or yellow (CHDM). Water (3.0 ml) was added, and the mixture cooled to 20°C and extracted with 3×2.0 ml of petroleum spirit (b.p. 30-40°C). The combined extracts were washed with water (2 × 4.0 ml) and dried over anhydrous sodium sulphate for NDM or KOH pellets for CHDM, in which form they can be stored at -10° C. Before use, the drying agent was removed, most of the solvent evaporated off under a stream of nitrogen at 10°C and the diazo derivatives dissolved in tetrahydrofuran (THF)-diethyl ether (1:1) to give an approximately 20% solution.

Preparation of esters

Free acids were dissolved in diethyl ether, methanol or THF as appropriate to give 1-2 mg per 100 μ l. A solution of the NDM or CHDM reagent was added in 20- μ l aliquots until the colour just persisted. Esterification took up to 10 min for the higher molecular weight acids, and slight warming was sometimes necessary for the NDM reaction. The final volume was adjusted to 400-500 μ l with ethyl acetate and 1-3 μ l samples were taken for GC or GC-MS analysis. Salts, as solids or concentrated aqueous solutions, were esterified by neutralization with 10% hydrochloric

TABLE I

RETENTION DATA FOR NAPHTHALENEMETHYL ESTERS OF CARBOXYLIC ACIDS

Column: 2.1 m × 2 mm I.D. glass, 3% OV-1 on Diatomite CQ, 100-120 mesh. Temperatures as indicated.

Group	Parent acid number	Parent acid	Relative retention
Group 1:	1	Acetic	0.41
column 195°C,	2	Propionic	0.57
injector 210°C;	3	Pivalic	0.66
reference,	4	Vinylacetic	0.77
methyl palmitate,	5	Glycollic	0.85
retention 4.4 min	6	Monochloroacetic	0.92
	7	Crotonic	0.98
	8	Dichloroacetic	1.20
	9	Monobromoacetic	1.27
	10	4-Hydroxybutyric	1.38
	11	Cyclopentylcarboxylic	2.00
Group 2:	12	Tetrahydrofuran-2-carboxylic	0.34
column 240°C,	13	Furan-2-carboxylic	0.36
injector 260°C;	14	Benzoic	0.57
reference,	15	Phenylacetic	0.59
methyl behenate,	16	Cyclohexaneacetic	0.61
retention 4.9 min	17	Nicotinic	0.64
	18	2,6-Dimethylbenzoic	0.78
	19	Mandelic	0.80
	20	6-Bromohexanoic	0.80
	21	Capric	0.88
	22	3-Methoxybenzoic	1.08
	23	Cinnamic	1.41
	24	Indole-2-carboxylic	1.42
	25	Indole-2-acetic	1.53
Group 3:	26	3,4,5-Trimethoxybenzoic	0.90
column 295°C,	27	Naphthalene-2-carboxylic	0.94
injector 300°C;	28	Naphthalene-2-acetic	0.98
reference,	29	3-Hydroxynaphthalene-2-carboxylic	0.98
cholesterol acetate,	30	Phenylcinnamic	1.35
retention 2.5 min	31	Palmitic	1.39
	32	Anthracene-9-carboxylic	1.76
	33	Stearic	2.16
	34	Succinic	2.65
	35	Phthalic	5.94
	36	Decane-1,10-dicarboxylic	12.44

TABLE II

RETENTION DATA FOR CYCLOHEXANEMETHYL ESTERS OF CARBOXYLIC ACIDS

Column: 2.1 m × 2 mm I.D. glass, 3% OV-1 on Diatomite CQ, 100-120 mesh. Temperatures as indicated.

Group	Parent acid number		Relative retention
Group 1:	1	Acetic	0.39
column 125°C,	2	Propionic	0.73
injector 170°C;	3	Pivalic	1.00
reference,	4	Vinylacetic	0.76
methyl caprate,	7	Crotonic	1.43
retention 4.4 min	8	Dichloroacetic	1.90
Group 2:	9	Bromoacetic	0.28
column 175°C,	11	Cyclopentylcarboxylic	0.61
injector 210°C;	13	Furan-2-carboxylic	0.62
reference,	16	Cyclohexaneacetic	0.82
methyl myristate,	14	Benzoic	1.06
retention 3.2 min	17	Nicotinic	1.15
	15	Phenylacetic	1.26
	18	2,6-Dimethylbenzoic	1.72
	19	Mandelic	1.78
	20	6-Bromohexanoic	1.96
	21	Capric	2.43
	22	3-Methoxybenzoic	2.58
	23	Cinnamic	3.35
Group 3:	24	Indole-2-carboxylic	1.00
column 235°C,	27	Naphthalene-2-carboxylic	1.09
injector 275°C;	28	Naphthalene-2-acetic	1.12
reference,	25	Indole-2-acetic	1.39
methyl arachidonate,	30	Phenylcinnamic	1.61
retention 3.0 min	32	Anthracene-9-carboxylic	4.18

acid in THF, and for aqueous solutions the addition of sufficient THF to render the solution homogeneous. The diazo reagent was then added; esterification was slower under these conditions. The solution was dried with a small amount of anhydrous sodium sulphate before analysis.

GC and combined GC-MS

Relative retentions of both NM and CHM esters were measured on a 2.1 m \times 2 mm I.D. glass column packed with 3% OV-1 on Diatomite CQ (100–120 mesh) at the temperatures given in Tables I and II, at a nitrogen carrier gas flow-rate of 12 ml/min. GC–MS was performed on a Kratos MS30 instrument using a 2.1 m \times 4 mm I.D. glass column packed with OV-1 as above, with a helium carrier gas flow-rate of 40 ml/min. All esters were chromatographed through a temperature programme starting at 180°C (for NM esters) or 130°C (for CHM esters) for 3 min, 25°C/min rise to 340°C for 4 min. Mass spectra were recorded at 24 eV electron impact, 300 μ A current and 1000 resolution (naphthalenemethyl dichloroacetate was also scanned at 3000 resolution).

TABLE III

MASSES AND RELATIVE INTENSITIES OF IONS IN THE MASS SPECTRA OF NAPHTHALENEMETHYL ESTERS OF CARBOXYLIC ACIDS

Ester	M^+		Ion a	Ion a		Ion b			Ion e		Ion f	
	m/z	I	m/z	Ι	m/z	I	m/z	I	m/z	I	m/z	
1 NM	200	34	-		43	61	115	28	129	52	141	100
2 NM	214	245	29	3.0	57	4.4	115	22	129	29	141	100
3 NM	242	7.1	57	100	85	5.3	115	21	129	7.3	141	94
4 NM	226	44	41	4.4	69	4.2	115	13	129	7.9	141	100
5 NM	216	24	31	8.4	_	_	115	40	129	10	141	100
6 NM	234	27	49	3.9	77	3.6	115	23	129	22	141	100
7 NM	226	9.2	41	2.8	69	100	115	11	129	9.2	141	46
8 NM	268	47	-	—		-	115	12	127	6.8	141	100
9 NM	279	13	-	_	_	_	115	24	129	34	141	100
10 NM	244	19	-	—	87	3.2	116	1.8	129	25	141	100
11 NM	254	8.9	69	56	97	22	115	13	128	7.6	141	100
12 NM	256	13	71	65		_	115	16	128	5.0	141	100
13 NM	252	45	-		95	57	115	4.2	128	6.1	141	100
14 NM	262	6.1	77	31	105	100	115	18	128	6.0	141	69
15 NM	276	9.4	91	14	_	-	115	11	127	3.1	141	100
16 NM	282	5.5	97	12	125	4.3	115	15	129	5.2	141	100
17 NM	263	18	79	32	107	50	115	21	129	12	141	100
18 NM	290	36	105	12	133	28	115	11	128	2.4	141	100
19 NM	292	12	107	46	_		115	19	128	5.5	141	100
20 NM	335	10	-	_	177	3.8	115	12	129	11	141	100
21 NM	312	4.5	_	-	_	-	115	4.1	128	8.0	141	100
22 NM	292	5.9	107	8.5	135	55	115	11	127	4.9	141	100
23 NM	288	43	103	48	131	65	115	32	127	10	141	100
24 NM	301	7.6	116	2.7	144	1.8	115	12	127	6.5	141	100
25 NM	315	12	130	100	_	_	115	8.9	128	3.8	141	44
26 NM	352	18	168	5.4	195	65	115	18	127	2.3	141	100
27 NM	312	19	*		*		115	13	127	20	141	100
28 NM	326	4.6	*		*		115	7.0	127	1.4	141	100
30 NM	364	6.4	179	50	207	4.7	115	16	128	3.4	141	100
31 NM	396	4.3	-	-	_	-	115	6.3	129	5.9	141	100
32 NM	362	13	178	14	205	6.6	115	11	127	2.9	141	100
33 NM	424	3.0		_		_	115	6.3	129	3.8	141	100
34 NM	398											
35 NM	446											
36 NM	482											

* Ions common to acid and ester groups.

RESULTS AND DISCUSSION

GC

For the purposes of retention time measurement, each series of esters was arranged into three temperature groups. Tables I and II list the relative retention data for NM esters and CHM esters, respectively, at the temperatures noted. Long-chain fatty acid methyl esters were suitable reference compounds except for NM Group 3, where cholesterol acetate was used. The reference was co-injected with

Ion g		Other ions												
m/z	Ι	m/z	I	m/z	I	m/z	I	m/z	I	m/z	I	m/z	I	
158	69	127	16	128	20	139	28	140	83	142	17	159	7.8	
158	62	44	9.4	127	10	128	13	139	12	140	47	142	13	
158	10	41	22	44	11	128	5.0	139	10	140	7.6	142	18	
158	22	41	4.4	127	6.0	128	6.3	139	10	140	17	142	14	
158	4.7	63	8.5	127	6.8	128	12	139	14	140	12	157	1.8	
58	28	63	4.5	71	6.0	127	10	128	11	140	55	157	12	
58	7.7	39	8.8	41	13	128	6.2	139	8.8	140	35	181	3.6	
56	7.3	128	6.6	129	5.0	139	8.7	140	14	158	4.7	233	1.6	
57	78	127	22	128	23	139	19	140	27	155	11	199	10	
58	44	43	7.0	128	15	139	14	140	33	157	29	200	1.1	
58	22	41	18	127	5.6	139	8.4	140	19	156	2.8	168	3.6	
56	1.9	41	13	127	48	129	2.8	139	8.3	140	19	157	1.7	
57	8.2	39	11	127	3.9	129	5.5	139	10	140	19	156	2.8	
56	3.1	44	5.6	51	9.2	127	4.2	129	5.0	139	14	140	23	
57	4.0	65	3.4	128	2.9	129	2.3	139	5.4	140	4.6	142	13	
58	11	41	19	55	43	81	25	83	3.7	128	4.3	140	7.7	
56	3.8	52	16	80	8.8	127	6.5	128	5.4	139	23	140	46	
_		43	5.6	77	6.8	79	8.7	91	1.6	118	2.1	139	5.4	
58	1.2	77	18	79	17	105	14	129	4.9	139	7.9	152	1.2	
58	64	69	11	127	5.1	128	6.6	139	8.1	140	26	219	1.5	
58	29	43	23	57	9.7	71	8.3	85	5.5	139	5.3	140	10	
55	2.3	63	5.0	77	12	92	5.5	139	14	140	12	152	2.1	
57	3.5	77	48	91	17	140	4.4	227	5.7	241	20	242	22	
54	4.2	89	5.9	91	3.1	117	3.4	130	13	139	4.2	155	3.5	
_	_	40	5.6	77	7.8	102	3.6	103	4.7	129	5.3	139	3.4	
55	1.5	40	6.5	53	6.1	66	4.6	77	5.0	139	9.2	140	7.7	
55	70	126	3.9	128	7.3	139	7.3	140	9.3	267	3.9	294	2.1	
55	0.65	40	1.5	113	0.55	126	0.55	128	1.3	139	2.8	158	0.40	
57	0.88	152	3.8	178	31	223	2.9	229	5.6	241	1.6	318	7.4	
58	61	43	21	57	15	71	7.9	85	4.8	128	3.3	140	16	
_		40	17	73	14	139	4.1	176	8.6	177	7.9	221	5.2	
	52	13	25	57	21	71	77	128	2 2	140	12	157	29	

the sample. The molecular weights of the esters are given in Tables III and IV. Based on the order of elution of the NM esters, each compound was given a "parent acid number" which is used to denote the parent acid component in Tables III and IV, and in discussion of the MS data. For example, 14 NM signifies benzoic acid naphthalenemethyl ester. Although fewer acids were investigated in these NM, and CHM series than in our previous work¹⁻³ on benzyl esters, we have retained a broad range of structural types of acid groups.

Naphthalenemethyl esters generally produced sharp symmetrical peaks, in-

TABLE IV

MASSES AND RELATIVE INTENSITIES	OF IONS IN	THE MASS	SPECTRA (OF CYCLOHEX	ANEMETH
YL ESTERS OF CARBOXYLIC ACIDS					

Ester	M^+	M^+		Ion a		Ion b		Ion c			Ion i	
	$\overline{m/z}$	I	<i>m/z</i>	I	$\overline{m/z}$	I	m/z	I	m/z	I	m/z	I
1 CHM	156	_			43	100	_		81	40	96	20
2 CHM	170	_	29	21	57	100	74	2.1	81	75	96	43
3 CHM	198		57	93	85	12	103	5.7	81	39	96	100
4 CHM	182	_	4 1	28	69	19	86	24	81	27	97	48
7 CHM	182	-	41	62	69	100	87	14	81	56	96	71
8 CHM	224	-	83*	6.4	111*	0.38			81	62	97	40
9 CHM	234	-		_	121	8.0	_	-	81	89	96	97
11 CHM	210	0.17	69	52	97	52	114	13	83	4.5	96	100
13 CHM	212	1.4	68	27	95	81	113	27	81	69	96	100
14 CHM	218	-	77	38	105	96	122	13	81	50	96	100
15 CHM	232	_	91	61	-		136	3.0	81	21	95	69
16 CHM	238	1.4	**		125	15	142	4.5	81	26	96	100
17 CHM	219	4.6	78	41	106	53	124	100	81	53	96	34
18 CHM	246	5.8	105	32	133	100	149	97	81	26	96	53
19 CHM	248	2.0	107	100	134	0.42	_	_	81	33	96	24
20 CHM	291	-		-	177	13	194	2.8	81	44	96	100
21 CHM	268	-	_	-	155	12	172	6.1	81	40	96	100
22 CHM	248	8.4	107	10	135	42	152	100	81	12	96	5.7
23 CHM	244	3.4	103	51	131	87	148	25	81	63	96	100
24 CHM	257	26	115	23	143	100	161	67	81	11	97	6.5
25 CHM	271	33	132	100	159	2.5	177	7.4	81	2.8	97	4.5
27 CHM	268	7.2	127	27	155	33	172	100	81	7.9	96	4.4
28 CHM	282	26	141	100	168	7.4	186	45	81	12	97	26
30 CHM	320	28	178	100	206	9.5	223	86	83	3.6	97	13
32 CHM	318	52	177	38	205	33	222	100	81	8.3	96	3.9

* Identified from 3000 resolution spectrum (see text).

** Ions common to acid and ester groups.

cluding the Group 3 esters which required high temperatures for elution. Dicarboxylic acids, even of simple structure, chromatographed very slowly. Of several tested, only 34 NM, 35 NM and 36 NM could be eluted from the column, the latter two esters having very long retention times. This result renders the NM derivative probably unsuitable for the GC of dicarboxylic acids.

Cyclohexanemethyl esters showed retention characteristics similar to those of benzyl esters^{1,2} and hence only a limited number of these were prepared (Table II) with a consideration more to the types for which mass spectral information was required. In CHM Groups 2 and 3, there were some reversals in the order of elution in comparison with the corresponding NM esters.

Peaks ascribed to remaining diazo reagent and by-products of the esterification reaction eluted before any of the esters. Small peaks due to impurities and residual tosyl intermediate were sometimes observed at higher temperatures, especially in the CHDM preparations, but they did not interfere with the GC or GC-MS analyses. It was not possible to obtain a CHDM preparation of high purity, but we did not attempt to purify either diazo reagent by vacuum distillation. Our

Other ions													
m/z	Ι	m/z	Ι	m/z	I	m/z	I	m/z	1	m/z	I	m/z	Ι
41	32	54	23	55	54	67	34	68	21	83	9.2	95	2.8
41	58	54	23	55	80	67	43	68	27	71	16	97	9.5
41	47	55	83	57	93	74	76	87	29	97	34	143	4.2
39	12	41	37	55	100	67	19	68	13	83	59	96	43
39	17	41	35	55	56	67	33	68	21	95	7.9	137	1.1
41	32	43	19	55	100	67	37	68	20	83	39	96	31
41	41	54	31	55	100	67	62	68	40	83	40	95	13
4 1	29	54	11	55	4 7	67	31	68	18	73	8.9	115	8.3
39	18	41	18	54	4.5	55	18	67	38	97	10	126	1.8
41	9.8	51	8.6	55	19	67	29	68	15	135	1.7	173	0.12
4 I	21	55	100	65	12	67	13	68	6.5	96	26	135	5.6
55	45	67	14	83	9.3	97	69	141	2.8	155	9.7	156	5.9
4 1	45	55	65	67	38	79	22	95	26	127	11	137	26
77	23	79	17	91	8.4	97	42	103	15	132	76	150	23
55	97	67	27	77	51	79	49	105	31	118	6.8	201	2.5
55	54	67	32	69	35	97	34	115	4.8	156	2.4	195	3.3
\$ 1	15	55	41	67	20	71	11	97	49	129	3.6	173	3.5
41	4.8	55	9.3	67	6.0	77	8.7	92	7.6	95	2.5	153	13
55	54	67	40	68	27	77	37	102	21	149	27	150	31
55	51	89	37	116	11	144	30	155	10	184	7.0	198	6.3
57	54	79	18	99	7.8	104	12	105	13	157	2.4	200	2.0
4 1	8.3	55	13	67	6.1	77	3.9	91	4.0	184	1.9	198	1.7
1 1	24	55	92	67	12	91	8.3	115	17	139	17	198	2.9
\$ 1	26	55	67	107	23	118	23	1562	10	177	81	205	6.7
\$ 1	24	55	33	81	7.9	151	9.6	176	25	178	22	281	6.5

impression was that CHDM was not sufficiently stable to be purified in this manner. Dimethylformamide, an excellent solvent for esterification using phenyldiazomethane², appeared to catalyse the rapid decomposition of CHDM. Stock solutions of CHDM in petroleum spirit could be kept for only 3-4 days at -10° C and in general the stability and behaviour of CHDM resembled that of diazomethane. In contrast, NDM showed excellent stability, stock solutions being stable for 2-3 weeks at -10° C. Presumably both phenyldiazomethane and NDM are stabilised by the proximity of an aromatic group.

Mass spectrometry

The principal ions in the mass spectra of the NM and CHM esters are listed in Tables III and IV, respectively. Tables V gives "formal" structures of the ions of most interest. Many of the fragments appeared as clusters of ions as a result of various hydrogen rearrangements and migrations, so that the ion notation in Table V refers to the group of ions. The most abundant ion in that group is given under the appropriate ion heading in Tables III and IV. Other ions are listed by abundance

TABLE V

PRINCIPAL IONS IN THE MASS SPECTRA OF NAPHTHALENEMETHYL AND CYCLOHEX-ANEMETHYL ESTERS OF CARBOXYLIC ACIDS

Ion	Formal structure	Formula
a b c	R ⁺ RCO(H) ⁺ RCOOH(H) ⁺	from acid moiety
d	↓ ↓	$C_9H_7^+$ m/z 115 group
e		$C_{10}H_7^+ m/z$ 127 group
f	ČH ₂	$C_{11}H_9^+ m/z$ 141
g	CH ₂ O	C ₁₁ H ₉ O ⁺ <i>m</i> / <i>z</i> 157 group
h	$\bigcap_{\mathbf{t}}$	$C_6H_9^+$ m/z 81 group
i	C, C,Hz	$C_{7}H_{12}^{+}m/z$ 96 group
j	CH20 ⁺	$C_7H_{11}O^+ m/z$ 111 group (not listed in Table IV)

or structural significance. Ion abundances are normalized to percent base peak. For halide-containing fragments only the peak due to the more abundant isotope is listed. Fragments which can be derived from both parts of the molecule are indicated by asterisks for 27 NM and 28 NM in Table III and by double asterisks for 16 CHM in Table IV.

The stabilizing nature of the NM group resulted in the major ions predictably arising from naphthalene and naphthalenemethyl with ion groups centred at 115 (ion d), m/z 127 (ion e), m/z 141 (ion f, usually base peak) and m/z 157 (ion g) with varying degrees of hydrogen migration to these ions. Molecular ions, usually of good abundance, were observed for all NM esters. Increasing aromaticity and, to some extent, increasing molecular weight, tended to increase the abundance of fragments from the acid group (ions a and b) although in the NM series the "free" acid ion c

was observed only in four esters (19 NM and 22 NM at m/z 152, 30 NM at m/z 223 and 32 NM at m/z 221) in contrast to CHM esters (see below).

Certain types³ of benzyl esters undergo a minor rearrangement⁹ involving the migration of the benzyl group to an unsaturated centre (usually phenyl) in the acid group, accompanied by a two-step elimination of H₂O and CO, or one-step elimination of (H)COOH from the molecular ion. As part of our interest in defining some of the structural requirements for this rearrangement, we wished to see whether any NM esters would undergo a similar aryl migration by applying the simple criterion³ of loss of 18 and 28 a.m.u., or 44-46 a.m.u., from M⁺, Such losses, however, were only observed in four esters, 7 NM (m/z 181), 23 NM (m/z 242), 27 NM (m/z 294 and 267) and 30 NM (m/z 318), where the last three presumably formed naphthylfluorene-type ions analogous to m/z 166 in benzyl benzoate⁹. From this limited occurrence, we concluded that the types of NM esters studied were much less amenable to this type of migration than are benzyl esters. Possibly a study of further examples of substituted naphthoic acid NM esters may show that the rearrangement is more favoured when both acid and esterifying groups are more structurally equivalent. Of course, loss of these molecules from M^+ does not necessarily mean that the proposed rearrangement has occurred. With the exception of this possible rearrangement, and other rearrangements observed in the cinnamic group (23 NM, 30 NM), the NM spectra were fairly straightforward. Simple cleavage was favoured over group migrations, although hydrogen migration of one to three atoms occurred to all ions containing the naphthyl group (ions d to g) in contrast to benzyl esters³ where hydrogen migration was observed only to the benzyloxy equivalent of ion g. Loss of halide or hydrogen halide was observed in 6 NM, 8 NM, 9 NM and 20 NM.

A selection representative of various acid types was analysed in the CHM series. General considerations of esters with alicyclic esterifying groups predict less useful mass spectra, particularly for esters of non-aromatic acids. Fragments from the CHM group dominated the spectra of low-molecular-weight acids, and showed varying degrees of hydrogen loss from the CHM group to give the principal ions centred at m/z 81 (ion h, formally cyclohexene) and m/z 96 (ion i, possibly methyl-cyclohexene) and hydrocarbon ions therefrom $(m/z \, 41, \, 55, \, 67)$. The oxygen-carrying species, cyclohexenemethyloxy ion j $(m/z \, 111)$ was observed as a minor peak in a few esters only (3 CHM, 7 CHM, 8 CHM, 11 CHM, 13 CHM, 20 CHM and 21 CHM) with intensities ranging from 0.8 to 3.5%. These have not been listed in Table IV.

Molecular ions were absent from low-molecular-weight acids but appeared with increasing molecular weight and charge-stabilizing nature of the acid; there was also a corresponding appearance of ions a and b from the acid group. Ions of the free or protonated acid (ion c) were also observed in the CHM series. The entry for ions a and b in 8 CHM based on a mass spectrum taken at 3000 resolution, when m/z 82.95 for CHCl₂ was distinguished from m/z 83.085 for C₆H₁₁ and m/z 110.947 for CHCl₂O from m/z 111.080 for C₇H₁₁O. The migration of hydrogen from the CHM group to the acid ions a, b and c was observed in many CHM esters.

Our investigations of higher esters are directed chiefly towards derivatives which may be applicable to direct GC-MS analysis of heavy isotopes, especially carboxyl ¹⁸O atoms in low-molecular-weight acids from biological systems^{10,11}. Ease of purification, esterification, extraction and satisfactory molecular ion intensities are all important in this respect (M⁺ often is the only ion containing both oxygens of

the carboxyl group). NM esters show promise in this direction, with M^+ present in all monocarboxylic acids tested, including long-chain fatty acids. Benzyl esters of long-chain fatty acids do not give⁴ M^+ , although their methyl esters normally do. The present initial study of both NM and CHM esters was concerned with the collection of GC and MS data and a brief comparison with benzyl esters. We have therefore not yet tested either derivative on a biologically derived system, but would predict that the bulky NM group may have the advantage of moving an ester of interest away from other non-esterifyable components or impurities in a GC run. Similarly, good solubility of the NM esters in a solvent such as hexane may prove useful in purification. The esterification procedure is fairly straightforward and also can be performed in the presence of small amounts of water. The analogous anthracenemethyl esters have been described¹² and used as fluorescent derivatives for fatty acid detection in HPLC, but esterification times are very long. Limitations noted in the GC behaviour of NM esters would appear to be the upper limit of about molecular weight 450 for successful GC on OV-1 packed columns, and the very long retention times of dicarboxylic acid NM esters.

Naphtyldiazomethane has been synthesised previously¹³, by a different route, from naphthaldehyde via the unstable hydrazone¹⁴ and used in the HPLC of longchain fatty acids¹⁵.

CHM esters would appear to have limited analytical applications. Although it was desirable to document the MS behaviour of CHM esters to maintain the completeness of our study, the spectra ultimately proved to be of little diagnostic value. The formation of potentially useful ions from the acid moiety in CHM esters was found to be neither consistent nor predictable.

REFERENCES

- 1 D. L. Corina, J. Chromatogr., 87 (1973) 254.
- 2 D. L. Corina, K. E. Ballard and K. Isaac, J. Chromatogr., 210 (1981) 146.
- 3 D. L. Corina, J. N. Wright and K. E. Ballard, Org. Mass Spectrom., 18 (1983) 60.
- 4 U. Hintze, H. Röper and G. Gercken, J. Chromatogr., 87 (1973) 481.
- 5 J. Oehlenschläger, U. Hintze and G. Gercken, J. Chromatogr., 110 (1975) 53.
- 6 K. Heyns and H. Paulsen, Chem. Ber., 86 (1953) 833.
- 7 T. J. Boer and H. J. Backer, Rec. Trav. Chim. Pays-Bas, 73 (1954) 229.
- 8 G. C. Overberger and J. B. Anselme, J. Org. Chem., 28 (1963) 592.
- 9 J. M. Beynon, R. M. Caprioli, R. H. Shapiro, K. B. Tomer and C. W. J. Chang, Org. Mass Spectrom., 6 (1972) 863.
- 10 D. L. Corina and D. C. Wilton, Biochem. J., 157 (1976) 573.
- 11 M. Akthar, M. R. Calder, D. L. Corina and J. N. Wright, Biochem. J., 201 (1982) 569.
- 12 S. A. Barker, Anal. Biochem., 107 (1980) 116.
- 13 T. Nakaya, T. Tomomoto and M. Imoto, Bull. Soc. Chem. Jap., 40 (1967) 691
- 14 S. W. Staley, C. K. Dustman and G. E. Linkowski, J. Amer. Chem. Soc., 103 (1981) 1069.
- 15 D. P. Matthees and W. C. Purdy, Anal. Chim. Acta, 109 (1979) 61